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GSH and L-His are abundant biomolecules and likely
biological ligands for Zn(II) under certain conditions.
Potentiometric titrations provide evidence of formation of
ternary Zn(II) complexes with GSH and L-His or D-His with
slight stereoselectivity in favour of L-His (ca. 1 log unit of
stability constant). The solution structure of the
ZnH(GSH)(L-His)(H2O) complex at pH 6.8, determined by
NMR, includes tridentate L-His, monodentate (sulfur) GSH,
and weak interligand interactions. Calculations of com-
petitivity of this complex for Zn(II) binding at pH 7.4
indicate that it is likely to be formed in vivo under conditions
of GSH depletion. Otherwise, GSH alone emerges as a likely
Zn(II) carrier.

Reduced glutathione (GSH) is one of the most abundant and
ubiquitous molecules of life, at 1–20 mM intracellularly, with
strong compartmentalisation and various functions in cellular
metabolism and defenses, including detoxication of heavy
metals.1 Zn(II) is involved, among others, in DNA transcription
(enzymes, zinc fingers) and intracellular signaling. O’Halloran
et al. demonstrated the absence of free Zn(II) in E. coli.2 On the
other hand, estimates for free Zn(II) in the cytoplasm of
eukaryotic cells range from 10212 M to 1029 M, depending on
cell type and state, and up to 1023 M in specific secretory
vesicles.3,4 Zn(II) is an emerging signalling ion, and thus its
metallothionein (MT)-bound pool ought to be easily mobili-
sable. Glutathione is capable of releasing Zn(II) from MT in a
redox reaction involving its oxidised form (GSSG).5 A lack of
consensus regarding interactions between GSH and Zn(II) ions
in vitro,6 and the absence of specific information on possible
interactions in vivo, made it difficult to predict further steps in
Zn(II) release. Also transport of Zn(II) outside and into the
eukaryotic cell is not understood very well. Histidine, which is
present ubiquitously in the body at ca. 1024 M, has been
implicated as a possible Zn(II) shuttle in some tissues.7

In order to provide a chemical basis for assessment of the
possible participation of glutathione in Zn(II) transport, we have
examined the acid–base chemistry and Zn(II) coordination of
GSH, GSSG and many of their analogues, using potentiometry
and NMR.8,9 In the course of these studies we noted that GSH
readily forms ternary complexes with Zn(II) and amino acids
and peptides. Here we present the results for such complexes,
involving histidine.

Protonation constants of GSH, L-His and D-His, as well as
stability constants for their binary and ternary complexes with
Zn(II), were obtained from potentiometric titrations and con-
firmed by one-dimensional 1H-NMR spectra at 300 and 500
MHz. These constants are provided in Table 1. The values for
major complexes of L-His and D-His, ZnA and ZnA2, agree well
with those determined previously.10 The same can be stated for
GSH complexes, where our model is practically identical with
the previous one.11 The only difference is our ZnH22L2
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species instead of ZnH21L22, postulated previously, and the
differences in values of constants can be ascribed to differences
in ionic strengths of determinations.

Ternary Zn(II) complexes with GSH and L-His or D-His are
novel. The analysis of 1D NMR spectra indicated that Zn(II) in

these complexes is coordinated to all three donors of histidine
(imidazole and amine nitrogens and carboxylate oxygen) and to
the thiol sulfur of GSH. The deprotonation yielding ZnLA22

from ZnHLA2 is, as indicated by the spectra, that of the
uncoordinated amine. Its pKa is the same in both diastereomers
(8.2 ± 0.1), and lowered compared to free GSH by 1.5 log units,
apparently due to the increased overall charge in the complex
and altered electrostatics in bonded GSH compared to free GSH
(neutralisation of the thiolate by Zn(II) and spatial shielding of
the amine from the Gly carboxylate).8 There is a significant
difference in stabilities of diastereomers, ca. 1 order of
magnitude in favour of the L-His containing species, which
translates into DDG of 2.8 kJ mol21. Fig. 1 presents a
simplified species distribution diagram, calculated for the L-His
system at the concentrations of the NMR experiments. The
abundance of the ZnHLA2 complex at weakly acidic to weakly
basic pH allowed for the determination of its structure by 2D
NMR at 500 MHz and molecular mechanics.13 Fig. 2 presents
the resultant lowest-energy structure and the overlap of ten low-
energy conformers, allowed by NOE connectivities. The
complex formation is primarily due to high enthalpies of Zn(II)
bonding by thiol sulfur and histidine donors. Its structure is
additionally stabilised by a local network of weak C–H…C, C–
H…N and N–H…C type hydrogen bonds (Fig. 2, dashed lines),
which is anchored on the b-methylene protons of His and Cys
residues.14 The differences in the involvement of individual
protons of each pair in H-bonding are reflected in the
spectacular differences of half-widths of their 1H NMR signals,
shown in Fig. 3.

Stability constants allow us to estimate the competitiveness
of the system studied towards zinc proteins.15 The competitivity

Table 1 Protonation and stability constants, I = 0.1 M, T = 25 °C12

log bijkl
a log bijkl

a

GSHb L-His
HL22 9.655(2) HA 9.129(1)
H2L2 18.391(2) H2A+ 15.165(2)
H3L 21.903(3) H3A2+ 16.85(5)
H4L+ 24.029(7)

D-His
Zn(GSH) HA 9.129(2)
ZnHL 14.74(2) H2A+ 15.142(3)
ZnL2 8.31(2) H3A2+ 16.83(6)
ZnH2L2

22 29.50(4)
ZnHL2

32 22.533(5) Zn(L-His)
ZnL2

42 13.617(5) ZnA+ 6.567(5)
ZnH21L2

52 3.817(6) ZnA2 12.025(5)
ZnH22L2

62 26.485(6) ZnH21A22 1.18(2)
ZnH22A2

22 29.90(2)
Zn(L-His)(GSH)
ZnHLA2 21.46(5) Zn(D-His)
ZnLA22 13.26(8) ZnA+ 6.61(1)

ZnA2 12.09(1)
Zn(D-His)(GSH) ZnH21A22 1.15(4)
ZnHLA2 20.37(10) ZnH22A2

22 29.83(3)
ZnLA22 12.24(5)
a log bijkl = log([MiHjLkAl]/[M]i[H]j[L]k[A]l). b Ref. 8.
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index, at pH 7.4, for GSH is 8.05 at 10 mM and 6.1 at 1 mM.
Inclusion of the ternary system with L-His increased these
values to 8.1 and 6.25, respectively, while the value for L-His

alone at 100 mM is 4.1. This indicates that GSH, rather than L-
His, may be an important player in zinc homeostasis, due to a
difference in normal intracellular concentrations of these
molecules. The participation of the ternary complex is ca. 4% of
total GSH-bonded Zn(II) at 10 mM GSH and ca. 20% at 1 mM
GSH. Its overall charge of 21 is lower than those of major bis-
complexes of GSH, therefore it may play a specific transport
role in more hydrophobic compartments. Altogether, the binary
and ternary complexes of GSH emerge as likely regulators of
zinc homeostasis. It should be noted that other efficient Zn(II)
chelators, abundant intracellularly, such as nucleotides (e.g.
ATP), should also be considered as likely partners for the
formation of ternary complexes with GSH.

This work was sponsored by the Polish State Committee for
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Fig. 1 Species distribution in the Zn(II)/GSH/L-His ternary system (each
reactant at 20 mM); arrow marks the pH of the 2D NMR experiment.

Fig. 2 Solution structure of ZnH(GSH)(L-His)(H2O)2 (lowest energy
conformer); insert shows 10 low energy conformers to demonstrate the
mobility of the Gly residue.

Fig. 3 Part of 1H NMR spectrum (500 MHz), demonstrating differentiation
of linewidths between b protons of Cys and His residues in the ternary
complex.
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